翻訳と辞書
Words near each other
・ Nilphamari-1 (Jatiyo Sangshad constituency)
・ Nilphamari-2 (Jatiyo Sangshad constituency)
・ Nilphamari-3 (Jatiyo Sangshad constituency)
・ Nilpotence theorem
・ Nilpotent
・ Nilpotent algebra (ring theory)
・ Nilpotent cone
・ Nilpotent group
・ Nilpotent ideal
・ Nilpotent Lie algebra
・ Nilpotent matrix
・ Nilpotent operator
・ Nilpotent orbit
・ Nilpotent space
・ Nilradical
Nilradical of a Lie algebra
・ Nilradical of a ring
・ Nilratan Sircar
・ Nils
・ Nils (album)
・ Nils A. Røhne
・ Nils Aage Jegstad
・ Nils Aall Barricelli
・ Nils Aaness
・ Nils Aas
・ Nils Adlercreutz
・ Nils Ahlstrom House
・ Nils Ahnlund
・ Nils Ahrén
・ Nils Allesson


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nilradical of a Lie algebra : ウィキペディア英語版
Nilradical of a Lie algebra
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible.
The nilradical \mathfrak(\mathfrak g) of a finite-dimensional Lie algebra \mathfrak is its maximal nilpotent ideal, which exists because the sum of any two nilpotent ideals is nilpotent. It is an ideal in the radical \mathfrak(\mathfrak) of the Lie algebra \mathfrak. The quotient of a Lie algebra by its nilradical is a reductive Lie algebra \mathfrak^(\mathfrak g)\to \mathfrak g\to \mathfrak^(\mathfrak g) in \mathfrak). This is in contrast to the Levi decomposition: the short exact sequence
: 0 \to \mathfrak(\mathfrak g)\to \mathfrak g\to \mathfrak^^{\mathrm{ss}} is semisimple).
==See also==

* Levi decomposition
* Nilradical of a ring, a notion in ring theory.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nilradical of a Lie algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.