翻訳と辞書 |
Nilradical of a Lie algebra : ウィキペディア英語版 | Nilradical of a Lie algebra In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible. The nilradical of a finite-dimensional Lie algebra is its maximal nilpotent ideal, which exists because the sum of any two nilpotent ideals is nilpotent. It is an ideal in the radical of the Lie algebra . The quotient of a Lie algebra by its nilradical is a reductive Lie algebra in ). This is in contrast to the Levi decomposition: the short exact sequence : is semisimple). ==See also==
* Levi decomposition * Nilradical of a ring, a notion in ring theory.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Nilradical of a Lie algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|